Статьи

Глава I ОБЩИЕ СВЕДЕНИЯ


Глава I ОБЩИЕ СВЕДЕНИЯ

ОБ АЛЮМИНИИ

§ 1. Свойства алюминия и области его применения

Алюминии—химический элемент третьей группы периодической системы элементов Д. И. Менделеева. Его порядковый номер 13, атомная масса 26,98. Устойчивых нзотопов алюминии не имеет.

Химические свойства

Алюминий имеет электронную конфигурацию 1s22s22p63s23p1. На третьем (внешнем) энергетическом уровне атома алюминия находятся три электрона, и в химических соединениях алюминии обычно трехвалентен. Из трех валентных электронов два расположены на s-подуровне и один на p-подуровне (3s23p1).

Так как один p-электрон с ядром атома связан слабее, чем два спаренных s-электрона, то в определенных условиях, теряя p-электрон, атом алюминия становится одновалентным ионом, образуя соединения низшей валентности (субсоединения). Кристаллизуется алюминии в гранецентрированной кубической решетке.

Алюминий химически активен. Уже в обычных условиях он взаимодействует с кислородом воздуха, покрываясь очень тонкой и прочной пленкой оксида Al2S3.
Эта пленка защищает алюминий от дальнейшего окисления и обусловливает его довольно высокую коррозионную стойкость, а также ослабляет металлический блеск. Чем чище алюминий, тем выше его стойкость против коррозии, что объясняется более прочным сцеплением оксндной пленки с поверхностью чистого металла. Из присутствующих в алюминии примесей наиболее сильно снижают его коррозионную стойкость примеси железа.

В мелкораздробленном состоянии алюминий при нагревании на воздухе воспламеняется и сгорает с выделением большого количества тепла. С серой алюминий реагирует также при нагревании с образованием сульфида алюминия Al2S3; с хлором и жидким бромом реагирует при обычной температуре, а с йодом — при нагревании или в присутствии воды, служащей катализатором. В атмосфере фтора при комнатной температуре алюминий покрывается пленкой фтористого алюминия АlFз, которая препятствует дальнейшей реакции; при темно-красном калении
взаимодействие алюминия с фтором протекает очень энергично. С азотом алюминии взаимодействует при нагревании выше 800°С с образованием нитрида алюминия AlN. Взаимодействие алюминия с углеродом начинается при 650°С, но протекает энергично при температуре около 1400С° с образованием карбида алюминия А14С3.

Нормальный электродный потенциал алюминия в кислой среде 1,66 В, в щелочной 3,25 В.

Будучи амфотерным, алюминий растворяется в соляной кислоте и в растворах щелочей. В серной кислоте и в разбавленной азотной алюминий растворяется медленно; в концентрированной азотной кислоте, в органических кислотах и в воде алюминий устойчив.

Физические свойства

Температура плавления алюминия технической чистоты (99,5 % А1) 658°С.
С повышением степени чистоты температура плавления алюминия возрастает и для металла высокой чистоты (99,996 % А1) составляет 660,24°С. Удельная теплота плавления алюминия—около 390 Дж/г, удельная теплоемкость при 0°С—0,88 Дж/(г.°С). При переходе алюминия из жидкого состояния в твердое объем его уменьшается на 6,6 % (99,75% А1). Кипит алюминий при 2500 °С.

Следует отметить, что удельная теплота плавления алюминия по сравнению с другими металлами очень высока; например, удельная теплота плавления меди 205 Дж/г, железа 273 Дж/г.

Плотность алюминия меньше плотности железа в 2,9 раза, меди—в 3,3 раза.
В твердом состоянии (при 20 °С) для алюминия технической чистоты (99,75 % А1) она составляет 2,703 г/см3, а для алюминия высокой чистоты (99,996 % А1) 2,6989 г/см3. В расплавленном состоянии алюминий жидкотекуч и хорошо заполняет формы при литье. Вязкость и поверхностное натяжение алюминия при 1000° С составляют соответственно 0,0013 Па.с и 0,454 Н/м.

В твердом виде алюминий легко подвергается ковке, прокатке, волочению, резанию. Из него можно вытягивать тончайшую проволоку и катать фольгу.

Пластичность алюминия возрастает по мере повышения, его чистоты. Временное сопротивление литого алюминия технической чистоты составляет 88—118 Па, прокатанного 176—275 Па. Относительное удлинение соответственно равно 18—25 и 3—5 %, а твердость по Бринеллю НВ 235—314 и 440—590.

Алюминий имеет высокую теплопроводность и электропроводность. В зависимости от чистоты теплопроводность алюминия составляет 238 Вт/(м-°С) (99,7% А1) и 247 Вт/(м.°С) (99,99% А1). Электропроводность алюминия также зависит от его чистоты. Для алюминия технической чистоты (99,5 % А1) она составляет 62,5 % от электропроводности меди, а для алюминия высокой чистоты (99,997% А1) 65,45 %. Различные примеси влияют на электропроводность алюминия в неодинаковой степени. Наиболее сильно электропроводность снижают
примеси хрома, ванадия и марганца. В меньшей степени, чем примеси, на электропроводность алюминия влияет степень его деформации и режим термической обработки. Отрицательное влияние деформации на электропроводность устраняется отжигом. Удельное электросопротивление отожженной проволоки из алюминия технической чистоты (99,7% А1) составляет (0,0279-0,0282) Ю-6 Ом.м.

Следует также отметить, что алюминий обладает высокой способностью отражать световые и тепловые лучи, которая близка к отражающей способности серебра и увеличивается с повышением чистоты металла.

Области применения

Алюминий обладает целым рядом свойств, которые выгодно отличают его от других металлов. Это — небольшая плотность алюминия, хорошая пластичность и достаточная механическая прочность, высокие тепло- и электропроводность. Алюминий нетоксичен, немагнитен и коррозионностоек к ряду химических веществ. Благодаря всем этим свойствам, а также относительно невысокой стоимости по сравнению с другими цветными металлами он нашел исключительно широкое применение в самых различных отраслях современной техники.

Значительная часть алюминия используется в виде сплавов с кремнием медью, магнием, цинком, марганцем и другими металлами. Промышленные алюминиевые сплавы обычно содержат не менее двух-трех легирующих элементов, которые вводятся в алюминий главным образом для повышения механической прочности.

Наиболее ценные свойства всех алюминиевых сплавов—малая плотность (2,65—2,8), высокая удельная прочность (отношение временного сопротивления к плотности) и удовлетворительная стойкость против атмосферной коррозии.

Алюминиевые сплавы подразделяют на деформируемые и литейные. Деформируемые сплавы подвергают горячей и холодной обработке давлением, поэтому они должны обладать высокой пластичностью. Из деформируемых сплавов широкое применение нашли дуралюмины — сплавы алюминия с медью, магнием и марганцем. Имея небольшую плотность, дуралюмины по механическим свойствам близки к мягким сортам стали. Из деформируемых алюминиевых сплавов, а также из чистого алюминия в результате обработки давлением (прокатка,
штамповка) получают листы, полосы, фольгу, проволоку, стержни различного профиля, трубы. Расход алюминия на изготовление этих полуфабрикатов составляет около 70 % его мирового производства. Остальной алюминий применяется для изготовления литейных сплавов, порошков, раскислителей, а также для других целей.

Из литейных сплавов получают фасонные отливки различной конфигурации.
Широко известны литейные сплавы на основе алюминия—силумины, в которых основной легирующей добавкой служит кремний (до 13%).

В настоящее время алюминий и его сплавы используют практически во всех областях современной техники. Важнейшие потребители алюминия и его сплавов—авиационная и автомобильная отрасли промышленности, железнодорожный и водный транспорт, машиностроение, электротехническая промышленность и приборостроение, промышленное и гражданское строительство, химическая промышленность, производство предметов народного потребления.

Использование алюминия и его сплавов во всех видах транспорта и в первую очередь — воздушного позволило решить задачу уменьшения собственной (“мертвой”) массы транспортных средств и резко увеличить эффективность их применения. Из алюминия и его сплавов изготовляют авиаконструкции, моторы, блоки, головки цилиндров, картеры, коробки передач, насосы и другие детали.
Алюминием и его сплавами отделывают железнодорожные вагоны, изготовляют корпуса и дымовые трубы судов, спасательные лодки, радарные мачты, трапы.

Широко применяют алюминий и его сплавы в электротехнической промышленности для изготовления кабелей, шинопроводов, конденсаторов, выпрямителей переменного тока. В приборостроении алюминий и его сплавы используют в производстве кино- и фотоаппаратуры, радиотелефонной аппаратуры, различных контрольно-измерительных приборов.

Благодаря высокой коррозионной стойкости и нетоксичности алюминий широко применяют при изготовлении аппаратуры для производства и хранения крепкой азотной кислоты, пероксида водорода, органических веществ и пищевых продуктов. Алюминиевая фольга, будучи прочнее и дешевле оловянной, полностью вытеснила ее как упаковочный материал для пищевых продуктов. Все более широко используется алюминий при изготовлении тары для консервирования и храпения продуктов сельского хозяйства, для строительства зернохранилищ и других быстровозводимых сооружений. Являясь одним из важнейших стратегических металлов, алюминий, как и его сплавы, широко используется в строительстве самолетов, танков, артиллерийских установок, ракет, зажигательных веществ, а также для других целей в военной технике.

Алюминий высокой чистоты находит широкое применение в новых областях техники — ядерной энергетике, полупроводниковой электронике, радиолокации, а также для защиты металлических поверхностей от действия различных химических веществ и атмосферной коррозии. Высокая отражающая способность такого алюминия используется для изготовления из пего отражающих поверхностей нагревательных и осветительных рефлекторов и зеркал.

В металлургической промышленности алюминий используют в качестве восстановителя при получении ряда металлов (например, хрома, кальция, марганца) алюмотермическими способами, для раскисления стали, сварки стальных деталей.
Широко применяют алюминий и его сплавы в промышленном и гражданском строительстве для изготовления каркасов зданий, ферм, оконных рам, лестниц и др. В Канаде, например, расход алюминия для этих целей составляет около 30 % от общего потребления, в США— более 20 %.

По масштабам производства и значению в народном хозяйстве алюминий прочно занял первое место среди других цветных металлов.

§ 2. История развития алюминиевой промышленности

Алюминий сравнительно недавно стал промышленным металлом. Впервые металлический алюминий получил датский физик Г. Эрстед в 1825 г.. восстановив хлористый алюминий амальгамой калия. В дальнейшем способ Эрстеда был улучшен:, амальгаму калия заменили металлическим калием, а затем—более дешевым натрием; нестойкий и гигроскопичный хлористый алюминий заменили двойным хлоридом алюминия и натрия (AlCl3-NaCI).

В 1865 г. русский ученый Н. Н. Бекетов предложил получать алюминий вытесненном его из фтористых соединении магнием. Этот способ нашел применение .о ряде стран Западной Европы. Производство алюминия “химическими” методами осуществлялось примерно в течение 35 лет (с 1854 до 1890 г.). За это время было получено около 200 т алюминия. В конце 80-х годов прошлого столетия химические способы производства алюминия были вытеснены электролитическим.

Основоположниками электролитического способа производства алюминия являются Поль Эру во Франции и Чарльз Холл в США, которые в 1866 г. независимо друг от друга заявили аналогичные патенты на способ получения алюминия электролизом глинозема (А1203), растворенного в расплавленном криолите (Na2AIF6). С открытием электролитического способа началось быстрое развитие алюминиевой промышленности. Если в 1900 г. выпуск алюминия во всем мире составил 5,7 тыс. т, но уже к 1930 г. он приблизился к 270 тыс. т, в 1950 г. составил (без стран социализма) около 1,3 млн. т, а в 1980 г.—более 12 млн. т.
В капиталистическом мире основными производителями алюминия являются США, Япония, Канада, ФРГ, Норвегия.

В дореволюционной России не было собственной алюминиевой промышленности. Однако в конце прошлого и начале настоящего столетия русские ученые (Н. Н. Бекетов, П. П. Федотьев, Н. А. Пушин, Д. А. Пеняков, Е. И. Жуковский и другие) выполнили ряд исследований, сыгравших большую роль в развитии мировой алюминиевой промышленности. Под руководством П. П. Федотьева были проведены глубокие исследования теоретических основ электролитического способа получения алюминия, в частности были исследованы двойные системы фторид алюминия—фторид натрия, криолит—глинозем, явления растворимости алюминия в электролите, анодный эффект, а также ряд других процессов, связанных с электролизом криолито-глиноземных расплавов. Результаты этих исследований получили мировую известность.

В 1882—1892 гг. химик К. П. Байер разработал в России щелочной способ получения глинозема, который до настоящего времени является основным в мировой алюминиевой промышленности. В 1895 г. Д. А. Пеняков предложил способ получения глинозема из бокситов спеканием с сульфатом натрия в присутствии угля, а А. Н. Кузнецов и Е. И. Жуковский в 1915 г.—способ получения глинозема из низкосортных руд путем восстановительной плавки их на шлаки алюминатов щелочноземельных металлов. Н. А. Пушин с сотрудниками в 1914 г.
впервые в нашей стране получил алюминий “русского происхождения”, т. е. Из отечественных сырья и материалов.

Условия для создания в нашей стране алюминиевой промышленности, являющейся крупным потребителем электроэнергии, появились только после Великой Октябрьской социалистической революции. Решающую роль в этом сыграл разработанный в 1920 г. по инициативе и под руководством В. И. Ленина план ГОЭЛРО, положивший начало созданию прочной энергетической базы в нашей стране. Построенная в соответствии с этим планом в 1926 г. первая крупная гидроэлектростанция на р. Волхов явилась энергетической базой первого в СССР
Волховского алюминиевого завода. В декабре 1927 г. XV съезд ВКП(б) принял решение о создании в нашей стране алюминиевой промышленности, а в августе 1929 г. Совет Труда и Обороны принял решение о строительстве в СССР Волховского и Днепровского алюминиевых заводов. В 1929 г. на Ленинградском опытном заводе “Красный Выборжец” под руководством П. П. Федотьева были
проведены длительные производственные испытания по получению алюминия электролитическим путем из отечественных материалов.

В 1930 г. в Ленинграде был пущен опытный завод, который сыграл большую роль в развитии советской алюминиевой промышленности. На этом заводе испытывалось оборудование, осваивался технологический режим, готовились рабочие и инженерно-технические кадры для первых советских алюминиевых заводов. Одновременно были проведены исследования по производству электродных изделий, необходимых для получения алюминия. Результаты этих исследований легли в основу проектирования первых электродных заводов—Московского и Днепровского. Разработанный в Институте прикладной минералогии способ получения криолита был положен в основу проектирования производства криолита
на Полевском криолитовом заводе.

В 1931 г. были созданы Научно-исследовательский институт алюминиевой промышленности (НИИСалюминпй) и проектный институт—гипроалгомпний.
Позднее НИИСалюминий и Гипроалюминий были объединены в единый Всесоюзный алюминиево-магниевын институт (ВАМИ).

14 мая 1932 г. вступил в эксплуатацию Волховский алюминиевый завод, а в 1933 г. на базе Днепровской ГЭС—Днепровский алюминиевый завод. Очень много внимания становлению советской алюминиевой промышленности уделял С. М. Киров, который возглавлял Ленинградскую партийную организацию. Первым алюминиевым заводам нашей страны—Волховскому и Днепровскому—в дальнейшем было присвоено его имя.

В период с 1926 по 1936 г. в Государственном институте прикладной химии (ГИПХ) под руководством А. А. Яковкина был разработан способ получения глинозема из тихвинских бокситов спеканием их с содой и известняком. В результате впервые была разрешена проблема переработки высококремнистых бокситов. В 1938 г. вошел в эксплуатацию Тихвинский глиноземный завод, а в 1939 г. на базе высококачественных североуральских бокситов—Уральский алюминиевый завод.

В начале Великой Отечественной войны Волховский и Днепровский алюминиевые заводы и Тихвинский глиноземный были выведены из строя. Оборудование этих заводов вывезли на Урал и в Сибирь. В годы Великой Отечественной войны был значительно расширен Уральский алюминиевый завод к введены в эксплуатацию Новокузнецкий (1943 г.) и Богословский (1945 г.) алюминиевые заводы.

В послевоенные годы были восстановлены Волховский и Днепровский алюминиевые заводы и Тихвинский глиноземный завод, а также вошли в эксплуатацию новые алюминиевые заводы: Канакерский (1950 г.), Кандалакшский (1951 г.), Надвоицкий (1954 г.), Сумгаитский (1955 г.). Ряд крупных алюминиевых заводов был пущен на базе дешевой электроэнергии гидроэлектростанций, построенных на Волге и реках Сибири: Волгоградский (1959 г.). Иркутский (1962 г.). Красноярский (1964 г.), Братский (1966 г.) и Таджикский (1975 г.).
Одновременно вводились новые предприятия по производству глинозема — Никалевский (1959 г.) и Ачинский (1970 г.) глиноземные комбинаты. Павлодарский (1964 г.) и Кировабадскии (1966 г.) алюминиевые заводы, Николаевский глиноземный завод (1980 г.).

Алюминиевая промышленность, созданная в нашей стране, занимает одно из ведущих мест в мире. При создании ее советскими учеными и специалистами впервые в мировой практике был решен ряд важных научно-технических проблем: комплексная переработка нефелиновых руд и концентратов с получением глинозема, соды, поташа и цемента, комплексная переработка алунитовых руд с получением глинозема, сульфата калия и серной кислоты, а также многие другие.